
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 5, Issue 2; April-June, 2018, pp. 102-103
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Web Application Security Testing Approaches
Aquil Ahmad Khan1 and Mayank Jain2

1,2ICERT, New Delhi
E-mail: 1akhan2786@gmail.com, 2engineermayankjain@gmail.com,

Abstract—Web applications go through rapid development phases
with extremely short turnaround time, making it difficult to eliminate
vulnerabilities. Security of the website deals with testing security of
the confidential data and make the data remain confidential. This
Paper proposed an approach to test the web application platform.
The World Wide Web is capable of delivering a broad range of
sophisticated applications. The approach of security testing is based
on understanding of how the client and the server communicate using
HTTP Protocol. Here we analyze the design mechanisms of Web
application security assessment in order to identify poor coding
practices that render web applications vulnerable to attacks such as
SQL injection and cross-site scripting. SQL injection and XSS attack
are very critical as attacker can get a vital information from the
server database. The proposed methodology is to create a
researchable test suite based on the collected user session with
genetic heuristic. The main aim of this paper is to explain the security
of the web application to generate a test case of the web application
on the bases of user session. We describe the use of a number of
software testing techniques including dynamic analysis, black-box
testing, gray-box testing, white-box testing, behavior monitoring and
suggest mechanisms for applying these techniques to Web
applications.

Keywords: Web Application Testing, Security Assessment, Gray Box
Testing, White Box Testing, Black-Box Testing.

1. INTRODUCTION

Web application testing is a very expensive process in terms
of time and resources due to the nature of web application.
Testing, designing and generating test cases. The number of
reported web application vulnerabilities is increasing
dramatically all over the world is witnessing a rapid increase
in the number of attacks on Web applications. Developer are
becoming more adept at writing secure code and developing &
distributing patches to counter. Using our proposed Topic
Model, the knowledgebase selects the best injection patterns
according to experiences learned through previous injection
feedback, and then expands the knowledgebase as more pages
are crawled. Both previous experiences and knowledge
expansion contribute to the generation of better injection
patterns. Besides, this paper presents a new approach to
vulnerability analysis which incorporates advantages of static
testing and dynamic analysis. This approach effectively
utilizes the extended Web Application Security testing model.

The web application is considered as one of the distributed
system, with a client and server or multi-tier architecture. Web
Application always run in different environment such as
different hardware, network connections, operating systems,
Web servers, and Web browsers. It is able to generate
software components at run time according to user inputs and
server status.

Web application Security testing approaches: Security
society actively develops automated approaches to finding
security vulnerabilities. But the most efficient way of finding
security vulnerabilities in web applications is Manual code
review. This technique is very time-consuming and requires
expert skills which is prone to overlooked errors. These
approaches can be divided into two wide categories: black box
testing and white box testing:

Black Box Testing: This testing methodology looks at what
are the available inputs for an application and what the
expected outputs are that should result from each input. Most
black-box testing tools employ either coordinate based
interaction with the applications graphical user interface (GUI)
or image recognition. An example of a black-box system
would be a search engine. You enter text that you want to
search for in the search bar, press “Search” and results are
returned to you. In such a case, you do not know or see the
specific process that is being employed to obtain your search
results, you simply see that you provide an input – a search
term – and you receive an output – your search results. It is
not concerned with the inner workings of the application, the
process that the application undertakes to achieve a particular
output.

White BoxTesting: This testing methodology looks into the
subsystem of an application. Whereas black-box testing
concerns itself exclusively with the inputs and outputs of an
application, white-box testing enables you to see what is
happening inside the application. Whitebox testing provides a
degree of sophistication that is not available with black-box
testing as the tester is able to refer to and interact with the
objects that comprise an application rather than only having
access to the user interface. An example of a white-box system
would be in-circuit testing where someone is looking at the
interconnections between each component and verifying that
each internal connection is working properly. Another

Web Application Security Testing Approaches 103

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 5, Issue 2; April-June, 2018

example from a different field might be an auto-mechanic who
looks at the inner-workings of a machine to ensure that all of
the individual parts are working correctly to ensure the
properly working of machine.

OWASP Top 10 Most Critical Web Application Security
Risks: One of the awareness documents provided by the
OWASP community is the ten most critical web application
vulnerabilities. The latest version that received consensus by
the start of this thesis is the OWASP top ten 2013. The list
was developed through analysing vulnerabilities found in
thousands of applications. The vulnerabilities are rated based
on number of occurrences, exploitability, detectability and
their impact. Through awareness documents like OWASP top
ten, OWASP Application Testing guide, code review guide
and development guide, they aim to provide the necessary
information to build and maintain secure applications.

A1: Injection

A2: Broken Authentication

A3: Cross-Site Scripting (XSS)

A4: Insecure Direct Object References

A5: Security Misconfiguration

A6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

A9: Using Components with Known Vulnerabilities

A10: Unvalidated Redirects and Forwards

Injection Vulnerability: There are different types of
Injections i.e. SQL, LDAP, XPath, XSLT, HTML, XML and
OS command. These type of issues occur when an user input
is sent to an interpreter as a part of a command or a query
without encoding or validation. To avoid such type of
vulnerabilities it is recommended to use safe APIs having
strongly typed parameterized queries and object relational
mapping (ORM) libraries, avoid providing detailed error
messages and properly validate input data for length, type and
syntax.

Cross-site scripting (XSS) vulnerability: Reflected XSS
occurs when a page reflects user provided data back to user.
Stored XSS occurs when hostile data could be stored in a file
or a database and at later stage displayed back without
filtering. To overcome this vulnerability, it is recommended
that Output encoding should be implemented on both the
client and server side. Server-Side input validation should be
done and white-listing of incoming data should be performed.

2. CONCLUSION

The approach of this paper is to assessing Web application
security was constructed from a software engineering
approach. A large number of defacement, phishing incident
reported due to web applications vulnerabilities is increasing
dramatically. Most of them result from improper coding or
none input validation by the web application. We also
introduced a new approach to automatic penetration testing by
leveraging it with knowledge from dynamic analysis. Web
Application security support analysis of data flows through
other data storage types or implemented by means of stored
procedures & triggers and special attention to development of
automatic crawling mechanisms will be given. Here automatic
form filling is the main issue. Static analysis can be used to
detect data flows from HTTP parameters to the database
fields. The investigation should also be done on augmentation
of the generated test suit to meet a full coverage from a
structural analysis.

REFERENCES

[1] OWASP WebScarab Project.
http://www.owasp.org/index.php/OWASP_WebScarab_Project
FastCGI Home. http://www.fastcgi.com/

[2] Scripting) Cheat Sheet. http://ha.ckers.org/xss.html
[3] OWASP WSFuzzer Project.

http://www.owasp.org/index.php/Category:OWASP_WSFuzzer
_Project

[4] CVE - Common Vulnerabilities and Exposures.
http://cve.mitre.org/

[5] Ricca, F., Tonella, P. “Analysis and Testing of Web
Applications.” In: Proceedings of the 23rd IEEE International
Conference on Software Engineering (Toronto, Ontario, Canada,
May 2001), 25 –34.

[6] Sanctum Inc. “Web Application Security Testing – AppScan
3.5.” http://www.sanctuminc.com

[7] E. Hieatt and R. Mee, “Going Faster: Testing the Web Ap-
plication,” IEEE Software, Vol. 19, No. 2, 2002, pp. 60-65.

[8] D. C. Kung, C. H. Liu and P. Hsia, “An Object-Oriented Web
Test Model for Testing Web Applications,” Proceedings of the
1st Asia-Pacific Conference on Web Applications, New York,
2000, pp. 111-120.

[9] User Session-Based Test Case Generation and Optimization
Using Genetic Algorithm* Zhongsheng Qian J. Software
Engineering & Applications, 2010, 3, 541-547.

[10] Mod_python – Apache/Python Integration.
http://modpython.org/

[11] SCGI: Simple Common Gateway Interface.
http://python.ca/scgi/

[12] PEP 333 – Python Web Server Gateway Interface v1.0.
http://www.python.org/dev/peps/pep-0333/

[13] The Django framework. http://www.djangoproject.com/
[14] Pylons Python Web Framework. http://pylonshq.com/
[15] CherryPy Framework. http://www.cherrypy.org/
[16] Spyce – Python Server Pages (PSP).

http://spyce.sourceforge.net/XSS (Cross Site

